

www.leantechnik.com

Operating instructions Stepless holding brake (SHB)

Sizes 5.0 - 5.3 Safety brake for profile rail guides

lssue date 2017-09 © LEANTECHNIK AG

Contents

Contents

1 General information

2 Safata	
1.1 Definitions of terms	4

2.1 Safety and information symbols	5
2.2 General information	5
2.2.1 Personnel requirements	5
2.3 Correct use	6
2.4 Handling	6
2.5 Required protective measures by the user	6
2.6 Dimensioning of further machine elements	6
3. Legal provisions	
3.1 The following standards, guidelines and regulations have been applied	7
3.2 Liability	7

5.2 Eldbilly	/
3.3 Warranty	7
3.4 Notes	7

4 Product description

4.1 Scope of delivery / delivery condition	8
4.2 Function	8

5 Technical data

5.1 Notes	9
5.1.1 Conditions of use	9
5.1.2 Ambient temperature	9
5.1.3 Protection class	9
5.1.4 Noise emissions	9
5.1.5 Installation location	9
5.1.6 Prerequisite for use of the product	9
5.1.7 Technical data	10

6 Correct use

6.1 Instructions for use	14
6.2 Limitations	14
6.3 Reasonably foreseeable misuse	14
6.4 Duration of use	14
6.5 Brake design	15
6.5.1 Calculation example (dynamic braking)	15
6.5.2 Switching times	16

Contents

Contents

7 Storag	
/ JIUIUU	е

7.1 Storage of brakes	17
8 Installation	
8.1 Installation conditions	18
8.1.1 General	18
8.1.2 Profile rail	18
8.1.3 Control	19
8.2 Installation	20
8.2.1 Prerequisite	20
8.2.2 Preparation	20
8.2.3 Installation process	20
9 Switching condition monitoring	21
10 Commissioning	
10.1 Brake test (before commissioning)	22
10.2 Brake test (static)	22
10.2.1 (Static) brake test	22
10.3 Brake test (during operation)	22
10.3.1 Regular function check (static)	22
11 Maintenance / Inspection / Switching frequency	
	00

13 Disposal	26
12 Disassembly	25
11.4 Cleaning	24
11.3 Maintenance	23
11.2 Inspection	23
11.1 Switching trequency	23

14 Malfunctions

27

Please read and follow the operating instructions carefully! Non-observance may lead to malfunctions or failure of the brake and associated damage. These operating instructions are an integral part of the brake delivery. Always keep the operating instructions easily accessible near the brake.

1.1 Definitions of terms

Term Meaning	
Stepless holding brake (SHB)	Pneumatically actuated spring-applied brakes as a component for holding and delaying moving machine parts.
Rated holding force F	Is the theoretical holding force assigned to the designation. The nominal holding force lies within the specified nominal holding force tolerances.
Load mass	Designation for the weight that the brake must hold.

2 Safety

2 Safety2.1 Safety and information symbols

Symbol	Signal word Meaning	
	DANGER	Indicates an imminent danger. If it is not avoided, death or serious injury will result.
	WARNING	Indicates a potentially hazardous situation. Failure to avoid this could result in death or serious injury.
	CAUTION	Indicates a hazardous situation. Failure to avoid this could result in light or minor injuries.
	ATTENTION	Possible damage to property may result.
i	Note	Indicates application tips and other particularly useful information. It is not a signal word for a dangerous or

2.2 General information

Brakes can also pose other hazards, e.g:

Hand injuries Danger of retraction

Serious personal injury and damage to property can occur:

- If the brake is used improperly.
- If the brake has been changed or modified.
- If the relevant STANDARDS of safety or installation conditions are not observed.

2.2.1 Personnel requirements

To avoid personal injury and damage to property only qualified and trained persons are allowed to work on the components. They must be sufficiently familiar with their design, transport, installation, commissioning, maintenance and disposal in accordance with the relevant standards and regulations.

Before installation and commissioning, the installation and operating instructions must be read carefully and the safety instructions must be observed, as incorrect handling can lead to personal injury and damage to property. The pneumatic brakes have been developed and manufactured according to the rules of technology known at the time and are generally considered safe to operate at the time of delivery • Technical data and specifications (type plate and documentation) must be strictly adhered to. General information:

General information:

During the necessary risk assessment when the machine or plant is being designed, the hazards must be assessed in accordance with Machinery Directive 2006/42/ EC and must be eliminated by means of suitable protective measures.

Brakes for safety-related applications must be used in a single or redundant manner according to the required category to achieve the required performance level (PLr) as defined by EN ISO 13849. This is invariably the task of the system manufacturer.

2.3 Correct use

Stepless holding brakes (SHB) are intended for use in machines and systems and may only be used for the purpose ordered and confirmed. Use outside the respective technical specifications is considered incorrect.

Stepless holding brakes (SHB) are used for holding and decelerating on profile rails.

Stepless holding brakes (SHB) prevent unintentional falling or crashing of gravity-loaded axles.

Not suitable for use in potentially explosive atmospheres

2.4 Handling

Before mounting, the brake must be checked for proper condition (visual inspection). Not considered to be proper:

- External damage
- Outer oiling
- External soiling

The function of the brake must be checked both after installation and after prolonged periods of system inactivity.

2.5 Required protective measures by the user

- Covering of moving parts to protect against crushing and entrapment.
- Provision of an additional corrosion protection measure if the brake is used in extreme environmental conditions or outdoors with direct weather influences.

2.6 Dimensioning of further machine elements

i

The effect of the maximum and minimum braking force on the other machine components must be taken into account for sufficient dimensioning. The stepless holding brake (SHB) observes a maximum braking force of 2.5 x nominal holding force and a minimum braking force of 1 x nominal holding force of the brake. If further brakes are arranged behind the stepless holding brake (SHB), the load is added if the braking times of the different brakes overlap.

3. Legal provisions

3. Legal provisions

3.1 The following standards, guidelines and regulations have been applied

(also to be observed during installation and operation)

EN ISO 4414 General rules and safety requirements for pneumatic systems and their components

EN ISO 12100 Safety of machinery - General principles of design -Risk assessment and risk reduction

EN ISO 13849-1 Safety of machinery - Safety-related parts of control systems

3.2 Liability

The information, notes and technical data given in the documentation were up to date at the time of printing. Claims relating to brakes that have already been delivered cannot be asserted on the basis of this. Liability for damages and operational disturbances are not accepted in the event of:

- Failure to observe the installation and operating instructions,
- Improper use of the brakes,
- Unauthorised modification of the brakes,
- Improper work on the brakes,
- Handling or operating errors.

3.4 Notes

3.3 Warranty

- The warranty conditions correspond to the conditions of sale and purchase of Leantechnik AG (www.leantechnik.com)
- Defects must be reported to Leantechnik AG immediately after discovery.

Note on the Machinery Directive (2006/42/EC) The product is a component for installation in machinery in accordance with Machinery Directive 2006/42/EC. In conjunction with other elements, the brakes can fulfil safety-related applications. The type and scope of the measures necessary are derived from the risk analysis of the machine. The brake is then part of the machine and the machine manufacturer assesses the conformity of the safety device with the directive.

The commissioning of the product is prohibited until it has been ensured that the machine complies with the requirements of the directive.

Note on the ATEX Directive

The product is not suitable for use in potentially explosive atmospheres without this conformity assessment. To use this product in potentially explosive atmospheres, classification and labelling according to Directive 2014/34/EU must be carried out.

4 Product description

4.1 Scope of delivery / delivery condition

- The stepless holding brake (SHB) is assembled ready for installation.
- The stepless holding brake (SHB) is set to the specified nominal holding force.
- Observe the type plate
- The scope of delivery and delivery condition must be confirmed immediately after receipt of the shipment.
 LEANTECHNIK does not assume any warranty for defect claims asserted after this time.

Report transport damage to the supplier immediately. Incompleteness of the delivery and recognisable defects must be reported immediately at the manufacturer's works.

ATTENTION Brake may be damaged Removing the transport lock (K) when the brake is depressurised will result in damage. Only remove the transport lock (K) (red screw head) when pressurised.

Caution Note the brake's own weight The brake may fall during lifting / transporting. Crushing and impacts may result.

4.2 Function

The spring-loaded, closed and pneumatically opened stepless holding brake (SHB) clamps a profile rail in a manner that is infinitely variable and free of play.

Note!

Note!

The maximum clamping force can only be achieved when the brake is depressurised.

The spring-loaded system ensures the fail-safe principle with the stepless holding brake (SHB) working as a safety brake.

If the operating pressure is too low, the brake cannot be properly pressurised

(opened).

• By venting the stepless holding brake (SHB) with the required operating pressure, the clamping element of the brake is pressed against the cup spring. The profile rail can be moved (Fig. 1).

• By venting the stepless holding brake (SHB), the cup spring acts on the brake's clamping element. The profile rail is clamped (Fig. 2).

The maximum permissible sliding speed is 2 m/s. Higher speeds on request

Fig. 1 Sliding profile rail under the influence of pressure

Fig. 2 Clamped profile rail with pressure relief

5 Technical data

5 Technical data

5.1 Notes

5.1.1 Conditions of use

The indicated values are guideline values which have been determined in test facilities. The suitability for the intended application must be determined, if necessary, by independent testing. When designing the brakes, the installation situations, permissible friction work and braking distances as well as ambient conditions must be carefully checked and coordinated.

- Mounting and connection dimensions at the place of use must be matched to the size of the brake.
- The use of the brake under extreme environmental conditions or outdoors with direct contact with weather influences is not permitted.
- The surfaces of the exterior components are provided with a phosphate coating in the factory, which ensures a corrosion protection base.
- The provision of the required operating pressure must be guaranteed.

5.1.2 Ambient temperature

-10 °C to +60 °C

The technical data refers to the specified temperature range.

5.1.3 Protection class

(mechanical) IP44: When installed, protected against solid foreign bodies with a diameter of >1 mm and against splashing water on all sides.

5.1.4 Noise emissions

Generally no noise emissions

5.1.5 Installation location

The stepless holding brake (SHB) can be used in any installation position.

5.1.6 Requirements for the use of the product

Compare the limit values in these operating instructions with the current application, e.g.

- Pressure
- Clamping forces / braking forces
- Braking distances
- Masses
- Temperatures etc.
- Pressure medium

5.1.7 SHB1 short version

5 Technical data

٦

5.1.7 SHB1 short version

П

SHB1		Unit	5.0	5.1	5.3
Short version	A	mm	115	130	190
	В	mm	100	120	170
	С	mm	50	59	86.7
	D	mm	92	98	152
	E	mm	82	96	134
	F	mm	M12I215	M16J28	M24J43
	G	mm	25	30	37
	H	mm	155	20.7	32.7
		mm	21	26.7	40
	1	mm	Z 1	G1/8I95	
	J		(Connection Ma=12N	√m
	К	mm	M6	M8	M10
	L	mm	66	79.4	112.4
Balluff inductive sensor	Μ	mm	BES	516-3005-G-E4-C-P	U-05
	Ν	mm	25	25	25
	\bigcirc	mm	54.2 +-/0.1	62 +-/0.1	92.2 +/-0.1
	Р	mm	26	29.5	42.7
	Q	mm	2.2	1	1
	R	mm	4.2	3	5.5
	S	mm	1.5	1.5	29
	T	mm	23	27	48
Min_required thickness	IJ	mm	10	1.5	3.5
of the customer-side	0		10	10	00
mounting flange (steel)					
Nominal holding force ³⁾⁴⁾		N	1750	3000	6000
at 6 har		14	1750	3000	0000
Nominal holding force 3)4)		N	5000	7500	15000
at 20 bar		1 4	0000	,000	10000
pressure booster					
	min	bar		6 or 20	
Opening plessore	max	bar		8 or 28	
Stiffness	max.	N/um	380	490	1000
Max sliding speed		m/s	0000	2	1000
Ambient temperature		°C		$-10 \text{ to } \pm 60$	
	at 6 har		0.00	0.135	0.25
Circuit in standard litro at	at 20 har		0.3	0.148	0.65
	ai zo bai	INL	0.5	0.440	0.00
Prossuro modium			Comprossoo	l air with compressed	d air quality
riessole mediom			Compressed air with compressed air quality		
Weight		ka	3.3	4.9	15.67
Article number			5.0	5 1	5 3
SHB1 short version			0.0	0.1	0.0
20 bar version			501 388	501 300	501 302
			501 112	501 115	501 117
			JUT 443	JUT 44J	JUT 44/

3) Minimum holding force when the brake is depressurised and when the profile rail is dry or wetted with mineral oil
4) With a switching frequency of >200,000, a reduction in the nominal holding force of 20% must be expected

www.leantechnik.com

5.1.7 SHB2 long version

5 Technical data

5.1.7 SHB2 long version

SHB2		Unit	5.0	5.1	5.3
Long version	A	mm	192	225	325
5	В	mm	100	120	170
	C	mm	50	59	86 7
	D	mm	170	196	288
			00	06	124
	Г	TTTTT		90	134
	F	mm	MTZ#ZT.5	M10¥28	IV1Z4¥43
	G	mm	20	28.3	30
	H	mm	21.5	20.7	32.7
		mm	21	26	40
	J	mm		G 1∕8 ↓ 9.5	
			(Connection Ma=12N	Vm
	К	mm	M6	M8	M10
	L	mm	66	79.4	112.4
Balluff inductive sensor	Μ	mm	BES51	6-3005-G-E4-C-PU-()5
	Ν	mm	25	25	25
	0	mm	54.2 +-/0.1	62 +-/0.1	92.2 +/-0.1
	Р	mm	26	29.5	42.7
	Q	mm	2.2	1	1
	R	mm	4.2	3	5.5
	S	mm	15	15	29
	T	mm	23	27	48
Min required thickness		mm	10	15	35
of the customerside	0	11111	10	10	00
mounting lidinge (sleet)		NI	5000	7500	15000
Nominal holding force 3/4/			5000	/500	15000
at 6 bar					
Nominal holding force ³⁾⁴⁾		Ν	5000	/500	15000
at 20 bar					
using a					
pressure booster					
Opening pressure	min.	bar		6 or 20	
	max.	bar		8 or 28	
Stiffness		N/µm	380	490	1000
Max. sliding speed		m/s		2	
Ambient temperature		°C		-10 to +60	
Air consumption per	at 6 bar	NL	0.18	0.269	0.5
Circuit in standard litre at	at 20 bar	NL	0.6	0.897	1.3
Opening pressure					
Pressure medium			Compresse	d air with compresse	ed air quality
			accord	ling to ISO 8573-1	class 4
Weight		kq	5.33	8.86	26.67
Article number			5.0	5.1	5.3
SHB2 long version					
20 bar version			501 389	501 391	501 393
6 bar version			501 444	501 446	501 448

3) Minimum holding force when the brake is depressurised and when the profile rail is dry or wetted with mineral oil4) With a switching frequency of >200,000, a reduction in the nominal holding force of 20% must be expected

www.leantechnik.com

6 Correct use

6 Correct use

See also Section 2.3

6.1 Instructions for use

- Static application: Hold and clamp in the event of power failure - In case of pressure drop - EMERGENCY STOP
- Observance of the correct dimensioning of the clamping force and switching frequency during EMERGENCY STOP for safe holding of the mass and safe adherence to the required braking distance.
- Use in a clean environment (penetration of lubricating greases, coarse dust and other friction-reducing substances can impair the clamping / braking function).
- Use in closed buildings (in tropical regions, high ambient humidity and temperatures below 0 °C with long downtimes, in marine climates, only with special measures).

6.2 Limitations

- The brake is not suitable for use in heavily soiled environments
- The brake is not suitable for use in high ambient temperatures >70 °C
- The brake is not suitable for use in liquid media
- The brake is not suitable for use in a vacuum
- The brake not suitable for contact with abrasive media (e.g. friction and grinding dust)
- The brake is not suitable for contact with aggressive, corrosive media (e.g. solvents, acids, alkalis, salt, etc.)
- The brake is not suitable for contact with foodstuffs

6.3 Reasonably foreseeable misuse

The following uses are prohibited and can lead to hazards.

- Any opening of the screws on the housing.
- Operation without profile rail.
- Exceeding the specified maximum operating pressure.
- Changing the brake by means of additional recesses, drill holes, etc.

6.4 Duration of use

20 years or after reaching T10d (definition see EN ISO 13849-1) service life.

6.5 Brake design

Designation

1 2 3 β αΒ	[°] [m/s2]	Path Speed Axial force Angular position 0° (horizontal) to 90° (vertical) Acceleration of the downwards moving load, depending on the angular position	The load ence • Sv • Sv
av	[m/s2]	Deceleration	• C
g FBr Erog	[m/s2] [N] [N1]	Acceleration due to gravity (9.81 m/s2) Braking force for dynamic calculation Required holding force	The the
FNom	[I] [N]	Nominal holding force (minimum holding force)	lasti
FNtot	[N]	Rated holding force total (one or more brakes)	siop
Fmax	[N]	Maximum holding force	Des
m	[kg]	Load mass	
SBr	[m]	Braking path: path from beginning of deceleration until the load comes to a standstill	
SSys	[m]	System path: path travelled by the load until deceleration starts.	tKo
SKo	[m]	Stopping distance: path from signal interruption until the load comes to a standstill	Vo
t50	[s]	Brake switching time	Vmo
$^{\dagger V^{1)}}$	[s]	Valve switching time (not applicable for Type 382.0 .)	1110
†SV	[s]	Control unit switching time (signal processing time)	
tSys	[s]	System switching time	
tBr	[s]	Brake braking time	

General

When selecting the brake, the nominal holding force must be greater than or equal to the required holding force.

 $FNom \geq Freq. [N]$

Design for dynamic braking (EMERGENCY STOP)

As security, at least the weight of the load to be held + 100 % reserve must be provided for.

The greater the ratio of the nominal holding force to the required holding force, the shorter the stopping distance is (under identical technical conditions)

The minimum holding force required can be calculated using the following formula:

Freq. =
$$\frac{m \times g}{0.5}$$
 [N]

Design for static holding (clamping)

As security, at least the weight of the mass to be held +20 % reserve must be provided for.

The minimum holding force required can be calculated using the following formula:

Freq. =
$$\frac{m \times g}{0.8}$$
 [N]

The stopping distance / stopping time of the

load to be braked is strongly dependent on the following influences:

- Switching time of the control unit (signal processing)
- Switching time of the control valve
- Switching time of the brake

• Cross-section and length of cables

The greater the sum of the switching times the later the deceleration of the load (due to longer lasting acceleration). The stopping distance / stopping time becomes longer (with constant holding force).

Designation

	[s]	Stopping time: Time
		Signal interruption to standstill
		of the load
	[m/s2]	Initial speed
ХX	[m/s2]	Maximum speed

6 Correct use

6.5.1 Calculation example (dynamic braking)

Details		
Angular position of profile rail	β	$= 90^{\circ}$ (vertical axis)
Mass	m	= 200 kg
Initial speed	VO	= 0.5 m/s
Valve switching time	t∨	= 0.016 s
Control unit switching time	tSV	= 0.020 s
Available operating pressure		= 6 bar

1. Preselection of braking force

Freq.= $\frac{m \times g}{0.5}$	[N]
Freq.= $\frac{200 \times 9.81}{0.5} = 3924$	[N]
Selected: SHB 2 Size 5.1, Type 3850.0_0_ at 6 bar, Nominal holding force FNom = 6000 N (from Section 5.2 Table "Technical data")	

2. Calculation of stopping distance/stopping time

Checking the selected brake size

Acceleration of the load								
аB	=	$g \times sin(\beta)$	_	9.81x sin(90°)	=	9.81	[m/s2]	

Acceleration of the load						
SSys	=	$VO \times tSys + aB \times t$	łSy	rs2 × 0.5	[m/s2]	
SSys	=	0.5 × 0.079 + 9.8	[m/s2]			
SSys	=	0.071			[m/s2]	
tSys	=	t50 + tV + tSV	=	0.043 + 0.016 + 0.	02	
tSys	=	0.079			[m/s2]	

[m]

Braking distance

 $SBr = \frac{Vmax2}{2 \times (FNtot - aB)}$

m

Switching times		Size	
	5.0	5.1	5.3
Brake switching time Type 3850/1 t50 [s]	0.035	0.035	0.040

SBr	= <u>1.272</u> 2 ×20.19	=0.04	[m]
Vmax	$=$ V0 + aB \times tSys[m/s]		
Vmax	$= 0.5 + 9.81 \times 0.079$	=1.27	[m/s]

Stopping distance

SKo =S	Br + SSys [m]		
SKo	=0.04 + 0.071	=0.11	[m]

Stopping time

tKo =tBr +	tSys [s]		
tKo	=0.063 + 0.0	79	=0.142 [s]
tBr	= Vmax	1.27	-0.063[6]
	FNtot	20.19	-0.003 [3]
	dD		

Deceleration (for system dimensioning

aV	$=\frac{FNtot \times 2.5}{m}$ -c	$g = \frac{6000 \times 2.5}{200} - 9.8 = 65.$	1 [m/s2]
load	aV	$\frac{65.19}{9.81} = 6.64$	[g]

7 Storage

7.1 Storage of brakes

- Brakes should be stored lying down, in dry rooms, free of dust and vibrations.
- Relative humidity < 50 %.
- Temperature without major fluctuations in the range from 0 °C to +40 °C.
- No direct sunlight or UV light.
- Do not store aggressive, corrosive substances (solvents / acids / alkalis / salts / etc.) nearby.

8 Installation

8 Installation

8.1 Installation conditions

Observe before installing!

8.1.1 General

• The brake is supplied ready for installation.

Note! The brake must not be dismantled!

• The nominal holding force is determined by the preloading of the springs at the factory. The ball clamping screws for the adjustment of the stroke path are secured against twisting with Loctite 243.

CAUTION Nominal holding force can be influenced. Turning of the ball clamping screw by the customer can lead to malfunctions. Never turn the ball clamping screws.

8.1.2 Profile rail

Requirements on the profile rail

Note!

The function of the stepless holding brake (SHB) is only guaranteed if the rail surface is properly maintained.

ATTENTION Never operate the brake without a profile rail Operating the brake without a profile rail leads to damage. The brake can no longer be used.

CAUTION The clamping effect can be impaired by friction-reducing materials such as tough lubricants, greases or separating agents - clean if necessary. See Section 11.4

www.leantechnik.com

8.1.3 Control

Leantechnik recommends the following pneumatic controls. The piston chamber is filled with compressed air, thus eliminating the spring force. In the event of a power failure, the compressed air in the piston chamber is discharged. The spring force acts on the clamping element. The profile rail is clamped/braked.

Switching time-related applications

Recommendation! For applications to optimise the switching time (reduction of braking path)

- Select the shortest possible cable paths. Cross sections and the lengths of the cables influence the response times considerably.
- For faster brake application we recommend a quick exhaust valve (6) (selected according to the compressed air connection thread).

Note!

The flowing away of compressed air must not be compromised by any other components.

• The size and speed of the 3/2-way valve (5) influences the switching time.

Safety-related applications

Recommendation! For applications to optimise safety (in case of danger to persons)

- Use of a proximity switch for switch condition monitoring (see Section 9.1)
- In addition, use a pressure monitor (pressure switch 6) between the brake and the quick exhaust valve.

Position	Denomination
]	Pressure source
2	Maintenance unit
3	Check valve (for pressure fluctuations)
4	3/2-way valve (installation as close as possible to the brake)
5	Quick exhaust valve (for fast switching times)
6	Pressure switch (query for safety-relevant application)

8 Installation

8.2 Installation

8.2.1 Prerequisite

- Unpack the brake
- Check completeness
- Check the details on the type plate
- Visual inspection (e.g. after prolonged storage)

CAUTION Observe the dead weight of the brake: When lifting / dismantling, the brake may drop. Crushing and impacts may result.

8.2.2 Preparation

- Have the necessary tools ready:
 - Open-end wrench, etc.
 - Torque wrench
- Observe the required minimum thickness of the customer's mounting flange (dimension U).
- Have fastening screws ready (not included in scope of delivery)

Size and tightening torques of the fastening screws				
Size	Thread	Tight-	Strength	Мах.
		ening	class	screw-in
		torque		depth B
5.0	6 x M12	109 Nm	10.9	21.7 mm
5.1	6 x M16	260 Nm	10.9	27.7 mm
5.3	6 x M24	900 Nm	10.9	43 mm

All tightening torques are recommendations. This information does not release the user from

checking the data in relation to the installation situation.

8.2.3 Installation process

With wipers (optional), the connections m3 and m4 cannot be used.

1. Remove the screw plug from the desired pneumatic connection (J)

2. Connect the pneumatic hose via the thread on the pneumatic connection

(J) to the brake

3. Load the brake with operating pressure. See Technical data.

4. Unscrew the transport lock (K) and remove it

ATTENTION Brake may be damaged Removing the transport lock when the brake is depressurised will result in damage. Only remove the transport lock (red screw head) when pressurised.

- 6. Push the brake onto the profile rail.
- 7. Screw in the fastening screws (without torque).
- 8. Screw locking with Loctite 243

9. Depressurise the brake and thus tension it (centring).

ATTENTION Close the brake only with the guide. The brake must be pushed onto the profile rail.

10. Tighten the fastening screws with tightening torque Nm.

- 11. Apply pressure to the brake.
- 12. Depressurise the brake again (pressure relief).
- 13. Tighten the fastening screws with tightening torque

CAUTION Load crash possible

The brake has no function when the transport locks are screwed in. The transport lock (red screw head) must be removed.

9 Switch condition monitoring

Figure 6

Note! Switching condition monitoring is set and installed at the factory.

A proximity switch (2) emits a signal for each brake condition change. SHB 2 is equipped with 2 proximity switches (2).

Plausibility check

Brake open	Pressure on	Signal OFF
Brake closed	Pressure switched off	Signal ON

A signal evaluation of both conditions must be carried out by the customer.

Wiring diagram:

Technical data			
PNP/closer			
Rated operating voltage	U _e =24 VDC		
Operating voltage	U _e =1030 VDC		
Cable length	5000mm		

9 Switch condition monitoring

Replacing the proximity switch

Note!

Proximity switches are not considered to be fail-safe, and appropriate access for replacement or adjustment must be possible.

Prerequisite

WARNING Load crash possible Gravity-loaded axles must be fixed in place before work commences and therefore secured against falling.

• Brake is depressurised (closed) on the profile rail.

Disassembly

- 1. Unscrew the cable gland (3)
- 2. Unscrew the cylinder screws (5)
- 3. Remove the cover plate (4)

4. Unscrew the hexagon nut (1), unscrew the proximity switch (2) and remove.

Installation and adjustment

Initial situation: Proximity switch is not connected

Activ	ity	Result
1.	, Check whether the brake is depressuris	ed
2.	Screw the proximity switch in carefully it stops	until
2.1	Unscrew the proximity switch 1 revolution (360°)	on
3.	Lock the proximity switch (2) with	
	a hexagon nut (1)	
	(Tightening torque: 2 Nm	
4.	Connect the proximity switch	
	(see wiring diagram)	"ON" signal
5.	Set operating pressure	"OFF" signal
6.	Carry out a functional check	C
6.1	Switch off pressure	"ON" signal
6.2	Switch on pressure	"OFF" signal
7.	Pull the cable through the cable gland (3	0
8.	, Screw on the cover plate (4)	

9. Tighten the cable gland (3)

10 Commissioning

10 Commissioning

10.1 Brake test (before commissioning)

- All fastening screws must be checked for their prescribed tightening torque.
- Visual inspection of the pneumatic connections and lines.
- Check for leaks (pressure is switched on).

10.2 Brake test (static)

Caution During the brake test, hazards to persons and machine damage cannot be ruled out due to malfunctions (assembly errors, control errors, etc.). Do not enter danger area. Take any measures necessary to intercept or attenuate the load. Check the setup!

10.2.1 (Static) brake test

• The brake test is carried out by load transfer or by the drive.

Recommendation! Test the brake with the nominal holding

force or the maximum load mass.

10.3 Brake test (during operation)

Recommendation!

The assurance of the necessary holding force with all control and braking times in the event of danger from gravity-loaded axles must be checked by a test. A cyclical brake test during operation provides additional safety. Depending on the hazard, the relevant regulations and standards must be observed.

10.3.1 Regular function check (static)

• Depending on the application requirements, it is advisable to carry out regular brake force checks (depending on the application), e.g. test the static holding force once per shift with the nominal holding force or the maximum load mass.

• In addition to the regular check of the holding force, we recommend the use of switching condition monitoring (optional) in order to check the switching condition of the brake and to avoid a possible load drop in the event of vertical installation.

Recommendation!

The holding force can be reduced by frictionreduced substances. If the brake does not reach the nominal holding force during the functional test, repeat at 90 % of the nominal holding force and clean the profile rail at the next opportunity (see Section 11.4).

11 Maintenance / Inspection / Switching frequency11.1 Switching frequency

The stepless holding brake (SHB) is designed for a switching frequency of up to 200,000 switching operations.

11.2 Inspection

Check the condition

Measure	Condition	Interval	Execution
Visual inspection	Pneumatics	Determined by machine operator depending on installation situation Please consult Leantech- nik AG	Qualified personnel
	Profile rail	After each EMERGENCY STOP	
	Signs of wear	Determined by machine operator depending on installation situation Please consult Leantech- nik AG	Leantechnik AG

11.3 Maintenance

The stepless holding brake (SHB) is largely maintenance-free

Action	Note/Comment	Interval	Execution
Function test	Carry out regular function tests	see Section 10.3	
Check profile rail	The profile rail must be checked regularly for soil- ing with friction-reducing substances and cleaned if necessary (see Section 11.4). Special measures are required in the event of heavy dust and dirt accumulation or extreme envi- ronmental conditions. Please contact Leantechnik AG	At least every 6 months	Q u a l i f i e d personnel

If the stepless holding brake (SHB) no longer meets the required characteristics or if the prescribed safety for working on the machine or system is no longer assured, the brake must be inspected by Leantechnik AG and, if necessary, professionally repaired and approved.

11 Maintenance / Inspection / Switching frequency

11.4 Cleaning

Only in the event that heavy soiling impairs the function of the brake

• Clean the profile rail (using a lint-free, clean cloth) with methylated spirit.

The rail may be lubricated with oil or common bed track greases!

12 Disassembly

CAUTION Observe the dead weight of the brake When lifting / dismantling, the brake may drop. Crushing and impacts may result.

WARNING Load crash possible The brake must be unloaded.

The unloaded condition must be checked before disassembly

- Secure the danger area
- Support the load

Disassembly is carried out in the opposite order to Section 8.2.3 "Installation process".

13 Disposal

For disposal, observe the specific regulations of the respective country of use.

All steel components: Steel scrap (key no. 160117)

Seals, O-rings, V-seals, elastomers: Plastic (key no. 160119)

14 Malfunctions

14 Malfunctions

Error	Possible causes	Correction	Execution	
	Operating pressure too low	Check the operating pressure and increase if necessary		
Brake does not ventilate	Valve faulty	Replace the faulty valve	Qualified personnel	
	Leak in the supply line	Seal the leak		
	Wear limit of the brake reached	Replace the brake	Leantechnik AG	
Brake does not brake	Valve faulty	Replace the faulty valve		
	Profile rail does not fit the brake	Check the design, check technical data	Qualified	
Brake does not release	Cross section of supply line too small	Attach a line with a larger cross-section	personnel	
Braking distance too long	Profile rail does not fit the brake	Check the design, check technical data		
	Profile rail / brake shoes worn too much	Replace the brake	Leantechnik AG	
	Cross section of lines too small	Attach line with a larger cross section		
	Friction-reducing substances on the profile rail	Clean the profile rail		
	Incorrect dimensioning	Check the design, check	Qualifical	
	3/2-way valve too slow	technical data		
Switching condition monitor- ing gives no signal	Mounting and adjustment of the switching condition monitoring faulty	Carry out the setting again, see 9.1	personnel	
	Brake does not ventilate	See error Brake does not ventilate		
	Cable faulty	Replace the faulty cable		
	Proximity switch faulty	Replace the faulty proximity switch		

Leantechnik accepts no liability or warranty for the use of spare parts and accessories not supplied by Leantechnik, or for any resulting damage.